Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.611
Filter
1.
Nat Commun ; 15(1): 3335, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637555

ABSTRACT

Understanding the function of rare non-coding variants represents a significant challenge. Using MapUTR, a screening method, we studied the function of rare 3' UTR variants affecting mRNA abundance post-transcriptionally. Among 17,301 rare gnomAD variants, an average of 24.5% were functional, with 70% in cancer-related genes, many in critical cancer pathways. This observation motivated an interrogation of 11,929 somatic mutations, uncovering 3928 (33%) functional mutations in 155 cancer driver genes. Functional MapUTR variants were enriched in microRNA- or protein-binding sites and may underlie outlier gene expression in tumors. Further, we introduce untranslated tumor mutational burden (uTMB), a metric reflecting the amount of somatic functional MapUTR variants of a tumor and show its potential in predicting patient survival. Through prime editing, we characterized three variants in cancer-relevant genes (MFN2, FOSL2, and IRAK1), demonstrating their cancer-driving potential. Our study elucidates the function of tens of thousands of non-coding variants, nominates non-coding cancer driver mutations, and demonstrates their potential contributions to cancer.


Subject(s)
Neoplasms , Oncogenes , Humans , 3' Untranslated Regions/genetics , RNA, Messenger/genetics , Mutation , Neoplasms/genetics
2.
Cell Rep ; 43(4): 114044, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38568812

ABSTRACT

We identify a senescence restriction point (SeRP) as a critical event for cells to commit to senescence. The SeRP integrates the intensity and duration of oncogenic stress, keeps a memory of previous stresses, and combines oncogenic signals acting on different pathways by modulating chromatin accessibility. Chromatin regions opened upon commitment to senescence are enriched in nucleolar-associated domains, which are gene-poor regions enriched in repeated sequences. Once committed to senescence, cells no longer depend on the initial stress signal and exhibit a characteristic transcriptome regulated by a transcription factor network that includes ETV4, RUNX1, OCT1, and MAFB. Consistent with a tumor suppressor role for this network, the levels of ETV4 and RUNX1 are very high in benign lesions of the pancreas but decrease dramatically in pancreatic ductal adenocarcinomas. The discovery of senescence commitment and its chromatin-linked regulation suggests potential strategies for reinstating tumor suppression in human cancers.


Subject(s)
Cellular Senescence , Chromatin , Humans , Chromatin/metabolism , Cellular Senescence/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Signal Transduction , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Transcription Factors/metabolism , Mice , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/metabolism , Oncogenes
3.
Bioorg Med Chem ; 104: 117713, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38574409

ABSTRACT

In this study, we developed a promising dual-function fluorescent ligand termed KS-1 by a slight structural modification on a reported carbazole-based scaffold. KS-1 was then found to mainly bind and illuminate the nuclear DNA G-quadruplexes (G4s) in a sandwich-like interacting mode, and also effectively modulate the oncogene expression through a G4-mediated manner. Furthermore, KS-1 was proved to inhibit cancer cell growth either in 2D monolayer cells or 3D multicellular tumor spheroids. To be noted, this ligand could overcome the shortcomings of other reported dual-function ligands that appeared to accumulate in the lysosomes or mitochondria, and may be used as a theranostic agent in the future.


Subject(s)
G-Quadruplexes , Ligands , Oncogenes , Coloring Agents
4.
Am Soc Clin Oncol Educ Book ; 44(3): e432516, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38560815

ABSTRACT

Druggable oncogene-driven non-small cell lung cancer has led to innovative systemic treatment options, improving patients' outcome. This benefit is not only achieved in the metastatic setting but also in the postsurgical setting, such as in lung cancers harboring a common sensitizing EGFR mutation or ALK-rearrangement. To enhance the outcome of these patients, we need to understand the mechanisms of acquired resistance and evaluate the role of new drugs with novel mechanisms of action in the treatment landscape. In this chapter, we review treatment strategies of EGFR-mutant tumors in all stages, the mechanisms of acquired strategies, and novel therapies in this subset.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Anaplastic Lymphoma Kinase/genetics , ErbB Receptors/genetics , Mutation , Oncogenes , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology
5.
Methods Mol Biol ; 2797: 211-225, 2024.
Article in English | MEDLINE | ID: mdl-38570462

ABSTRACT

Missense mutations in the RAS family of oncogenes (HRAS, KRAS, and NRAS) are present in approximately 20% of human cancers, making RAS a valuable therapeutic target (Prior et al., Cancer Res 80:2969-2974, 2020). Although decades of research efforts to develop therapeutic inhibitors of RAS were unsuccessful, there has been success in recent years with the entrance of FDA-approved KRASG12C-specific inhibitors to the clinic (Skoulidis et al., N Engl J Med 384:2371-2381, 2021; Jänne et al., N Engl J Med 387:120-131, 2022). Additionally, KRASG12D-specific inhibitors are presently undergoing clinical trials (Wang et al., J Med Chem 65:3123-3133, 2022). The advent of these allele specific inhibitors has disproved the previous notion that RAS is undruggable. Despite these advancements in RAS-targeted therapeutics, several RAS mutants that frequently arise in cancers remain without tractable drugs. Thus, it is critical to further understand the function and biology of RAS in cells and to develop tools to identify novel therapeutic vulnerabilities for development of anti-RAS therapeutics. To do this, we have exploited the use of monobody (Mb) technology to develop specific protein-based inhibitors of selected RAS isoforms and mutants (Spencer-Smith et al., Nat Chem Biol 13:62-68, 2017; Khan et al., Cell Rep 38:110322, 2022; Wallon et al., Proc Natl Acad Sci USA 119:e2204481119, 2022; Khan et al., Small GTPases 13:114-127, 2021; Khan et al., Oncogene 38:2984-2993, 2019). Herein, we describe our combined use of Mbs and NanoLuc Binary Technology (NanoBiT) to analyze RAS protein-protein interactions and to screen for RAS-binding small molecules in live-cell, high-throughput assays.


Subject(s)
Luciferases , Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Oncogenes , Cell Communication , Mutation
6.
PLoS One ; 19(4): e0300626, 2024.
Article in English | MEDLINE | ID: mdl-38573998

ABSTRACT

BACKGROUND: Cuproptosis is a recently discovered type of cell death, but the role and behavior of cuproptosis-related genes (CuRGs) in cancers remain unclear. This paper aims to address these issues by analyzing the multi-omics characteristics of cancer-related genes (CuRGs) across various types of cancer. METHOD: To investigate the impact of somatic copy number alterations (SCNA) and DNA methylation on CRG expression, we will analyze the correlation between these factors. We developed a cuproptosis index (CPI) model to measure the level of cuproptosis and investigate its functional roles. Using this model, we assessed the clinical prognosis of colorectal cancer patients and analyzed genetic changes and immune infiltration features in different CPI levels. RESULTS: The study's findings indicate that the majority of cancer-related genes (CuRGs) were suppressed in tumors and had a positive correlation with somatic copy number alterations (SCNA), while having a negative correlation with DNA methylation. This suggests that both SCNA and DNA methylation have an impact on the expression of CuRGs. The CPI model is a reliable predictor of survival outcomes in patients with colorectal cancer and can serve as an independent prognostic factor. Patients with a higher CPI have a worse prognosis. We conducted a deeper analysis of the genetic alterations and immune infiltration patterns in both CPI positive and negative groups. Our findings revealed significant differences, indicating that CuRGs may play a crucial role in tumor immunity mechanisms. Additionally, we have noticed a positive correlation between CuRGs and various crucial pathways that are linked to the occurrence, progression, and metastasis of tumors. CONCLUSIONS: Overall, our study systematically analyzes cuproptosis and its regulatory genes, emphasizing the potential of using cuproptosis as a basis for cancer therapy.


Subject(s)
Colorectal Neoplasms , Oncogenes , Humans , Systems Analysis , Cell Death , DNA Methylation , Colorectal Neoplasms/genetics , Apoptosis , Copper
7.
Int J Oncol ; 64(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38639179

ABSTRACT

The exosomal pathway is an essential mechanism that regulates the abnormal content of microRNAs (miRNAs) in hepatocellular carcinoma (HCC). The directional transport of miRNAs requires the assistance of RNA­binding proteins (RBPs). The present study found that RBPs participate in the regulation of miRNA content through the exosomal pathway in HCC cells. First, differential protein expression profiles in the serum exosomes of patients with HCC and benign liver disease were detected using mass spectrometry. The results revealed that ribosomal protein L9 (RPL9) was highly expressed in serum exosomes of patients with HCC. In addition, the downregulation of RPL9 markedly suppressed the proliferation, migration and invasion of HCC cells and reduced the biological activity of HCC­derived exosomes. In addition, using miRNA microarrays, the changes in exosomal miRNA profiles in HCC cells caused by RPL9 knockdown were examined. miR­24­3p and miR­185­5p were most differentially expressed, as verified by reverse transcription­quantitative PCR. Additionally, using RNA immunoprecipitation, it was found that RPL9 was directly bound to the two miRNAs and immunofluorescence assays confirmed that RPL9 was able to carry miRNAs into recipient cells via exosomes. Overexpression of miR­24­3p in cells increased the accumulation of miR­24­3p in exosomes and simultaneously upregulated RPL9. Excessive expression of miR­24­3p in exosomes also increased their bioactivity. Exosome­mediated miRNA regulation and transfer require the involvement of RBPs. RPL9 functions as an oncogene, can directly bind to specific miRNAs and can be co­transported to receptor cells through exosomes, thereby exerting its biological functions. These findings provide a novel approach for modulating miRNA profiles in HCC.


Subject(s)
Carcinoma, Hepatocellular , Exosomes , Liver Neoplasms , MicroRNAs , Ribosomal Proteins , Humans , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Exosomes/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Oncogenes/genetics , Ribosomal Proteins/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
8.
Cancer Discov ; 14(4): 605-609, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38571416

ABSTRACT

We explore the phenomenon of somatic mutations, including those in cancer driver genes, that are present in healthy, normal-appearing tissues and their potential implications for cancer development. We also examine the landscape of these somatic mutations, discuss the role of clonal cell competition and external factors like inflammation in enhancing the fitness of mutant clones, and conclude by considering how understanding these mutations will aid in prevention and/or interception of cancer.


Subject(s)
Neoplasms , Oncogenes , Humans , Mutation , Neoplasms/genetics
9.
World J Gastroenterol ; 30(9): 1224-1236, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38577190

ABSTRACT

BACKGROUND: As a critical early event in hepatocellular carcinogenesis, telomerase activation might be a promising and critical biomarker for hepatocellular carcinoma (HCC) patients, and its function in the genesis and treatment of HCC has gained much attention over the past two decades. AIM: To perform a bibliometric analysis to systematically assess the current state of research on HCC-related telomerase. METHODS: The Web of Science Core Collection and PubMed were systematically searched to retrieve publications pertaining to HCC/telomerase limited to "articles" and "reviews" published in English. A total of 873 relevant publications related to HCC and telomerase were identified. We employed the Bibliometrix package in R to extract and analyze the fundamental information of the publications, such as the trends in the publications, citation counts, most prolific or influential writers, and most popular journals; to screen for keywords occurring at high frequency; and to draw collaboration and cluster analysis charts on the basis of coauthorship and co-occurrences. VOSviewer was utilized to compile and visualize the bibliometric data. RESULTS: A surge of 51 publications on HCC/telomerase research occurred in 2016, the most productive year from 1996 to 2023, accompanied by the peak citation count recorded in 2016. Up to December 2023, 35226 citations were made to all publications, an average of 46.6 citations to each paper. The United States received the most citations (n = 13531), followed by China (n = 7427) and Japan (n = 5754). In terms of national cooperation, China presented the highest centrality, its strongest bonds being to the United States and Japan. Among the 20 academic institutions with the most publications, ten came from China and the rest of Asia, though the University of Paris Cité, Public Assistance-Hospitals of Paris, and the National Institute of Health and Medical Research (INSERM) were the most prolific. As for individual contributions, Hisatomi H, Kaneko S, and Ide T were the three most prolific authors. Kaneko S ranked first by H-index, G-index, and overall publication count, while Zucman-Rossi J ranked first in citation count. The five most popular journals were the World Journal of Gastroenterology, Hepatology, Journal of Hepatology, Oncotarget, and Oncogene, while Nature Genetics, Hepatology, and Nature Reviews Disease Primers had the most citations. We extracted 2293 keywords from the publications, 120 of which appeared more than ten times. The most frequent were HCC, telomerase and human telomerase reverse transcriptase (hTERT). Keywords such as mutational landscape, TERT promoter mutations, landscape, risk, and prognosis were among the most common issues in this field in the last three years and may be topics for research in the coming years. CONCLUSION: Our bibliometric analysis provides a comprehensive overview of HCC/telomerase research and insights into promising upcoming research.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Telomerase , Humans , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/therapy , Oncogenes , Bibliometrics
10.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612755

ABSTRACT

Glypicans are linked to various aspects of neoplastic behavior, and their therapeutic value has been proposed in different cancers. Here, we have systematically assessed the impact of GPC4 on cancer progression through functional genomics and transcriptomic analyses across a broad range of cancers. Survival analysis using TCGA cancer patient data reveals divergent effects of GPC4 expression across various cancer types, revealing elevated GPC4 expression levels to be associated with both poor and favorable prognoses in a cancer-dependent manner. Detailed investigation of the role of GPC4 in glioblastoma and non-small cell lung adenocarcinoma by genetic perturbation studies displays opposing effects on these cancers, where the knockout of GPC4 with CRISPR/Cas9 attenuated proliferation of glioblastoma and augmented proliferation of lung adenocarcinoma cells and the overexpression of GPC4 exhibited a significant and opposite effect. Further, the overexpression of GPC4 in GPC4-knocked-down glioblastoma cells restored the proliferation, indicating its mitogenic effect in this cancer type. Additionally, a survival analysis of TCGA patient data substantiated these findings, revealing an association between elevated levels of GPC4 and a poor prognosis in glioblastoma, while indicating a favorable outcome in lung carcinoma patients. Finally, through transcriptomic analysis, we attempted to assign mechanisms of action to GPC4, as we find it implicated in cell cycle control and survival core pathways. The analysis revealed upregulation of oncogenes, including FGF5, TGF-ß superfamily members, and ITGA-5 in glioblastoma, which were downregulated in lung adenocarcinoma patients. Our findings illuminate the pleiotropic effect of GPC4 in cancer, underscoring its potential as a putative prognostic biomarker and indicating its therapeutic implications in a cancer type dependent manner.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Glioblastoma , Lung Neoplasms , Humans , Glypicans/genetics , Glioblastoma/genetics , Oncogenes , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics
11.
J Exp Clin Cancer Res ; 43(1): 68, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38439082

ABSTRACT

BACKGROUND: Proteasome inhibitors (PIs) are one of the most important classes of drugs for the treatment of multiple myeloma (MM). However, almost all patients with MM develop PI resistance, resulting in therapeutic failure. Therefore, the mechanisms underlying PI resistance in MM require further investigation. METHODS: We used several MM cell lines to establish PI-resistant MM cell lines. We performed RNA microarray and EccDNA-seq in MM cell lines and collected human primary MM samples to explore gene profiles. We evaluated the effect of MUC20 on cuproptosis of PI-resistant MM cells using Co-immunoprecipitation (Co-IP), Seahorse bioenergetic profiling and in vivo assay. RESULTS: This study revealed that the downregulation of Mucin 20 (MUC20) could predict PI sensitivity and outcomes in MM patients. Besides, MUC20 attenuated PI resistance in MM cells by inducing cuproptosis via the inhibition of cyclin-dependent kinase inhibitor 2 A expression (CDKN2A), which was achieved by hindering MET proto-oncogene, receptor tyrosine kinase (MET) activation. Moreover, MUC20 suppressed MET activation by repressing insulin-like growth factor receptor-1 (IGF-1R) lactylation in PI-resistant MM cells. This study is the first to perform extrachromosomal circular DNA (eccDNA) sequencing for MM, and it revealed that eccDNA induced PI resistance by amplifying kinesin family member 3 C (KIF3C) to reduce MUC20 expression in MM. CONCLUSION: Our findings indicated that MUC20 regulated by eccDNA alleviates PI resistance of MM by modulating cuproptosis, which would provide novel strategies for the treatment of PI-resistant MM.


Subject(s)
Multiple Myeloma , Proteasome Inhibitors , Humans , Proteasome Inhibitors/pharmacology , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Oncogenes , Cytoplasm , Antiviral Agents , DNA , DNA, Circular , Kinesins , Mucins
12.
J Exp Clin Cancer Res ; 43(1): 69, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443991

ABSTRACT

BACKGROUND: Head and neck squamous carcinoma (HNSCC) is known for its high aggressiveness and susceptibility to cervical lymph node metastasis, which greatly contributes to its poor prognosis. During tumorigenesis, many types of cancer cells acquire oncogenic super-enhancers (SEs) that drive the overexpression of oncogenes, thereby maintaining malignant progression. This study aimed to identify and validate the role of oncogenic SE-associated genes in the malignant progression of HNSCC. METHODS: We identified HNSCC cell-specific SE-associated genes through H3K27Ac ChIP-seq and overlapped them with HNSCC-associated genes obtained from The Cancer Genome Atlas (TCGA) dataset and Gene Expression Omnibus (GEO) datasets using weighted gene coexpression network analysis (WGCNA) to identify hub genes. The expression of IGF2BP2 and KLF7 in HNSCC was detected using clinical samples. To determine the biological role of IGF2BP2, we performed CCK-8, colony formation assay, Transwell migration assay, invasion assay, and orthotopic xenograft model experiments. Furthermore, we utilized a CRISPR/Cas9 gene-editing system, small-molecule inhibitors, ChIP-qPCR, and dual-luciferase reporter assays to investigate the molecular mechanisms of IGF2BP2 and its upstream transcription factors. RESULTS: Our study identified IGF2BP2 as a hub SE-associated gene that exhibited aberrant expression in HNSCC tissues. Increased expression of IGF2BP2 was observed to be linked with malignant progression and unfavorable prognosis in HNSCC patients. Both in vitro and in vivo experiments confirmed that IGF2BP2 promotes the tumorigenicity and metastasis of HNSCC by promoting cell proliferation, migration, and invasion. Mechanistically, the IGF2BP2-SE region displayed enrichment for H3K27Ac, BRD4, and MED1, which led to the inhibition of IGF2BP2 transcription and expression through deactivation of the SE-associated transcriptional program. Additionally, KLF7 was found to induce the transcription of IGF2BP2 and directly bind to its promoter and SE regions. Moreover, the abundance of KLF7 exhibited a positive correlation with the abundance of IGF2BP2 in HNSCC. Patients with high expression of both KLF7 and IGF2BP2 showed poorer prognosis. Lastly, we demonstrated that the small molecule inhibitor JQ1, targeting BRD4, attenuated the proliferation and metastatic abilities of HNSCC cells. CONCLUSIONS: Our study reveals the critical role of IGF2BP2 overexpression mediated by SE and KLF7 in promoting HNSCC progression. Targeting SE-associated transcriptional programs may represent a potential therapeutic strategy in managing HNSCC.


Subject(s)
Head and Neck Neoplasms , Nuclear Proteins , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Transcription Factors , Oncogenes , Head and Neck Neoplasms/genetics , Kruppel-Like Transcription Factors/genetics , RNA-Binding Proteins , Bromodomain Containing Proteins , Cell Cycle Proteins
13.
Clin Adv Hematol Oncol ; 22(2): 67-75, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38446474

ABSTRACT

Kirsten rat sarcoma virus (KRAS) is the most frequently mutated oncogene in human cancers, particularly in non-small cell lung cancer (NSCLC), where mutations are present in 32% of lung adenocarcinoma and 4% of squamous cell lung cancer. The most common KRAS variant is KRAS G12C, which accounts for nearly 40% of all KRAS mutations. Although it is the most common oncogenic driver in NSCLC, KRAS was considered a "nondruggable target" until recently, owing to the lack of any progress in developing targeted therapies for this oncogene. With the recent development and approval of selective KRAS G12C inhibitors such as sotorasib and adagrasib for the treatment of advanced or metastatic NSCLC in the second-line setting and beyond, the standard of care for managing these tumors has undergone a significant change. Mechanisms of resistance to KRAS G12C inhibitors are highly heterogeneous, including both on-target and off-target resistance as well as morphologic switching, thus limiting the activity of these drugs when used as monotherapy. New-generation inhibitors and different combination strategies are being developed in early-phase trials to overcome or delay the onset of resistance as well as to target non-G12C mutations. Owing to the biological heterogeneity of KRAS-mutant NSCLC, treatment will likely need to be individualized based on factors such as co-occurring mutations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Oncogenes
14.
Funct Integr Genomics ; 24(2): 52, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38448654

ABSTRACT

Long non-coding RNAs (lncRNAs) appear to be the crucial modulators in various processes and critically influence the oncogenesis. As one of the LncRNAs, LncRNA CCAT1 has been reported to be closely associated with the progression multiple cancers, but its role in modulating the radioresistance of lung adenocarcinoma (LUAD) remains unclear. In our present study, we screened the potential radioresistance related LncRNAs in LUAD based on the data from The Cancer Genome Atlas (TCGA) database. Data suggested that CCAT1 was abundantly expressed in LUAD and CCAT1 was significantly associated with poor prognosis and radioresistance. Moreover, our in vitro experiments showed that radiation treatment could trigger elevated expression of CCAT1 in the human LUAD cell lines. Further loss/gain-of-function investigations indicated that CCAT1 knockdown significantly inhibited cell proliferation, migration and promoted cell apoptosis in NCI-H1299 cells under irradiation, whereas CCAT1 overexpression in A549 cells yield the opposite effects. In summary, we identified the promoting role of CCAT1 in radioresistance of LUAD, which may provide a theoretical basis for radiotherapy sensitization of LUAD.


Subject(s)
Adenocarcinoma , RNA, Long Noncoding , Humans , Adenocarcinoma/genetics , Adenocarcinoma/radiotherapy , Epigenomics , Lung , Oncogenes , RNA, Long Noncoding/genetics
15.
J Int Med Res ; 52(3): 3000605241233160, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38456653

ABSTRACT

BACKGROUND: Pancreatic cancer is a malignant tumor of the digestive tract that shows increased mortality, recurrence, and morbidity year on year. METHODS: Differentially expressed genes between pancreatic cancer and healthy tissues were first analyzed from four datasets within the Gene Expression Omnibus (GEO). Gene ontology, disease ontology, and gene set enrichment analysis of differentially expressed genes were performed, and genes identified as characteristic of pancreatic cancer were screened using LASSO regression combined with support vector machine and recursive feature elimination (SVM-RFE). Differential analysis and receiver operating characteristic curve analysis were performed on the identified eigengenes, and validation was carried out using another dataset from the GEO database. Differences and correlations between characteristic pancreatic cancer genes and immune cells were analyzed. RESULTS: A total of 90 differentially expressed genes were identified by screening, and six genes characteristic of pancreatic cancer were obtained by taking the intersection of two characteristic genes identified by machine learning. Immunoassays yielded multiple immune cells associated with pancreatic cancer signature genes. CONCLUSION: The six characteristic genes screened by a combination of LASSO regression and SVM-RFE are potential new biomarkers for the early diagnosis and prognosis of pancreatic cancer, and could be a novel therapeutic target.


Subject(s)
Early Detection of Cancer , Pancreatic Neoplasms , Humans , Support Vector Machine , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Oncogenes , Pancreas
16.
Vet Q ; 44(1): 1-13, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38465827

ABSTRACT

Marek's disease virus (MDV) has become an increasingly virulent pathogen in the poultry industry despite vaccination efforts to control it. Brazil has experienced a significant rise of Marek's disease (MD) outbreaks in recent years. Our study aimed to analyze the complete meq gene sequences to understand the molecular epidemiological basis of MD outbreaks in Brazilian vaccinated layer farms. We detected a high incidence rate of visceral MD (67.74%) and multiple circulating MDV strains. The most prevalent and geographically widespread genotype presented several clinical and molecular characteristics of a highly virulent strain and evolving under positive selective pressure. Phylogenetic and phylogeographic analysis revealed a closer relationship with strains from the USA and Japan. This study sheds light on the circulation of MDV strains capable of infecting vaccinated birds. We emphasize the urgency of adopting preventive measures to manage MDV outbreaks threatening the poultry farming industry.


Subject(s)
Mardivirus , Marek Disease , Poultry Diseases , Animals , Poultry , Chickens/genetics , Brazil/epidemiology , Phylogeny , Mardivirus/genetics , Marek Disease/epidemiology , Marek Disease/prevention & control , Marek Disease/genetics , Farms , Oncogenes , Poultry Diseases/epidemiology , Poultry Diseases/prevention & control
17.
Cancer Res Commun ; 4(3): 946-957, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38457262

ABSTRACT

Epithelial-mesenchymal transition (EMT) in cancer promotes metastasis and chemotherapy resistance. A subset of triple-negative breast cancer (TNBC) exhibits a mesenchymal gene signature that is associated with poor patient outcomes. We previously identified PTK6 tyrosine kinase as an oncogenic driver of EMT in a subset of TNBC. PTK6 induces EMT by stabilizing SNAIL, a key EMT-initiating transcriptional factor. Inhibition of PTK6 activity reverses mesenchymal features of TNBC cells and suppresses their metastases by promoting SNAIL degradation via a novel mechanism. In the current study, we identify membrane-associated RING-CH2 (MARCH2) as a novel PTK6-regulated E3 ligase that promotes the ubiquitination and degradation of SNAIL protein. The MARCH2 RING domain is critical for SNAIL ubiquitination and subsequent degradation. PTK6 inhibition promotes the interaction of MARCH2 with SNAIL. Overexpression of MARCH2 exhibits tumor suppressive properties and phenocopies the effects of SNAIL downregulation and PTK6 inhibition in TNBC cells, such as inhibition of migration, anoikis resistance, and metastasis. Consistent with this, higher levels of MARCH2 expression in breast and other cancers are associated with better prognosis. We have identified MARCH2 as a novel SNAIL E3 ligase that regulates EMT and metastases of mesenchymal TNBC. SIGNIFICANCE: EMT is a process directly linked to drug resistance and metastasis of cancer cells. We identified MARCH2 as a novel regulator of SNAIL, a key EMT driver, that promotes SNAIL ubiquitination and degradation in TNBC cells. MARCH2 is oncogene regulated and inhibits growth and metastasis of TNBC. These insights could contribute to novel strategies to therapeutically target TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Ubiquitin-Protein Ligases , Humans , Gene Expression Regulation , Oncogenes , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Membrane Proteins/genetics , Membrane Proteins/metabolism
18.
J Craniomaxillofac Surg ; 52(4): 413-419, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38443188

ABSTRACT

The aim of the study was to investigate the expression of EGFR and HER-2 oncogenes using an experimental two stage chemically induced carcinogenesis protocol on the dorsal skin in FVB/N mice. Forty female FVB/N mice 4 weeks old, were grouped into one control (n = 8) and two experimental groups (Group A: n = 16, Group B: n = 16) following a randomization process. Two-stage carcinogenesis protocol, was implicated, including an initial treatment with 97.4 nmol DMBA on their shaved dorsal skin and subsequent treatments of 32.4 nmol TPA applications after 13 weeks for Group A and after 20 weeks for Group B. The control group C, received no treatment. Skin was examined weekly for tumor development. Post-experiment, animals were euthanized for tissue analysis. The histological status of the skin lesions in the experimental groups corresponded well with tumour advancement (from dysplasia to poorly-differentiated carcinoma). Tumour sections were evaluated histologically and immunohistochemically. EGFR expression was found significantly higher in precancerous and malignant tumours (p = 042 and p = 008 respectively), while tended to be higher in benign tumours (p = 079), compared to normal histology. Moreover, mean percentage of EGFR positive expression in malignant tumours was significantly higher than in benign tumours (p < 001). HER-2 expression was found significantly higher in precancerous and malignant tumours (p = 042 and p = 015 respectively), while tended to be higher in benign tumours (p = 085), compared to normal histology. Furthermore, mean percentage of HER-2 positive expression in malignant tumours was significantly higher than in benign tumours (p = 005). The study demonstrated that in FVB/N mice subjected to a two-stage chemically induced carcinogenesis protocol, there was a significant increase in the expression of EGFR and HER-2 oncogenes in precancerous and malignant skin lesions compared to normal tissue. This suggests a potentially early role of these oncogenes in the progression of skin tumours in this model.


Subject(s)
Precancerous Conditions , Skin Neoplasms , Mice , Animals , Female , Skin Neoplasms/chemically induced , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Carcinogenesis/chemically induced , Carcinogenesis/genetics , Oncogenes , Models, Theoretical , ErbB Receptors/genetics
19.
Gene ; 912: 148355, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38467314

ABSTRACT

BACKGROUND: Breast cancer (BC) is the most prevalent malignant disease affecting women globally. PANoptosis, a novel form of cell death combining features of pyroptosis, apoptosis, and necroptosis, has recently gained attention. However, its precise function in BC and the predictive values of PANoptosis-related genes remain unclear. METHODS: We used the expression data and clinical information of BC tissues or normal breast tissues from public databases, and then successfully developed and verified a BC PANoptosis-related risk model through a combination of univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, and Kaplan-Meier (KM) analysis. A nomogram was constructed to estimate survival probability, and its accuracy was assessed using calibration curves. RESULTS: Among 37 PANoptosis-related genes, we identified 4 differentially expressed genes related to overall survival (OS). Next, a risk model incorporating these four PANoptosis-related genes was established. Patients were stratified into low/high-risk groups based on the median risk score, with the low-risk group showing better prognoses and higher levels of immune infiltration. Utilizing the risk score and clinical features, we developed a nomogram to predict 1-, 3- and 5-year survival probability. X-linked inhibitor of apoptosis protein (XIAP) emerged as a potentially risky factor with the highest hazard ratio. In vitro experiments demonstrated that XIAP inhibition enhances the antitumor effect of doxorubicin through the PANoptosis pathway. CONCLUSION: PANoptosis holds an important role in BC prognosis and treatment.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , X-Linked Inhibitor of Apoptosis Protein/genetics , Oncogenes/genetics , Doxorubicin , Apoptosis/genetics
20.
Exp Cell Res ; 437(1): 114010, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38508329

ABSTRACT

Lung adenocarcinoma (LUAD) is a common and deadly form of lung cancer, with high rates of metastasis and unsatisfactory clinical outcomes. Herein, we examined the influence of TMEM158 on the LUAD progression. A combination of bioinformatic analyses was used to assess the TMEM158 expression pattern, prognostic implications, and potential function in LUAD. The levels of TMEM158 and TWIST1 were evaluated in clinical samples from LUAD patients using Western blot analysis and qRT-PCR. To discover the function and underlying molecular pathways of TMEM158 in LUAD, we employed a combination of experimental approaches in vitro, such as flow cytometry analysis and colony formation, Co-IP, CCK-8, Transwell, and wound-healing assays. Elevated expression of TMEM158 in LUAD is associated with increased cancer aggressiveness and a poor prognosis. In vitro experiments demonstrated that high levels of TMEM158 promote cell proliferation, progression through the cell cycle, migration, and invasion while suppressing apoptosis. Knockdown of TMEM158 produced opposite effects. The underlying mechanism involves TMEM158 and TWIST1 directly interacting, stimulating the PI3K/AKT signaling pathway in LUAD cells. This investigation emphasizes the molecular functions of TMEM158 in LUAD progression and proposes targeting it as a promising treatment approach for managing LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Oncogenes , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Cell Proliferation/genetics , Cell Movement/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Nuclear Proteins/genetics , Twist-Related Protein 1/genetics , Membrane Proteins/genetics , Tumor Suppressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...